# BRYDE'S WHALE (Balaenoptera edeni): Hawaii Stock #### STOCK DEFINITION AND GEOGRAPHIC RANGE Bryde's whales occur in tropical and warm temperate waters throughout the world. Leatherwood et al. (1982) described the species as relatively abundant in summer and fall on the Mellish and Miluoki banks northeast of Hawaii and around Midway Island. Ohsumi and Masaki (1975) reported the tagging of "many" Bryde's whales between the Bonin and Hawaiian Islands in the winters of 1971 and 1972 (Ohsumi 1977). Summer/fall shipboard surveys of the waters within the U.S. Exclusive Economic Zone (EEZ) of the Hawaiian Islands resulted in 13 Bryde's whale sightings throughout the study area in 2002, 30 in 2010, and 2 in 2017 (Figure 1; Barlow 2006, Bradford et al. 2017, Yano et al. 2018). There is currently no biological basis for defining separate stocks of Bryde's whales in the central North Pacific. Bryde's whales were seen occasionally off southern California (Morejohn and Rice 1973) in the 1960s, but their seasonal occurrence has **Figure 1.** Bryde's whale sighting locations during the 2002 (diamonds), 2010 (circle), and 2017 (square) shipboard surveys of U.S. EEZ waters surrounding the Hawaiian Islands (Barlow 2006, Bradford *et al.* 2017, Yano *et al.* 2018). Outer line represents approximate boundary of survey area and U.S. EEZ. Dark gray shading indicates the original Papahanaumokuakea Marine National Monument, with the lighter gray shading denoting the full 2016 Expansion area. Dotted line represents the 1000 m isobath. increased since at least 2000 based on detection of their distinctive calls (Kerosky et al. 2012). For the MMPA stock assessment reports, Bryde's whales within the Pacific U.S. EEZ are divided into two areas: 1) Hawaiian waters (this report), and 2) the eastern Pacific (east of 150°W and including the Gulf of California and waters off California). The Hawaiian stock includes animals found both within the Hawaiian Islands EEZ and in adjacent high seas waters; however, because data on abundance, distribution, and human-caused impacts are largely lacking for high seas waters, the status of this stock is evaluated based on data from U.S. EEZ waters of the Hawaiian Islands (NMFS 2005). ## POPULATION SIZE Encounter data from shipboard line-transect surveys of the entire Hawaiian Islands EEZ was recently reevaluated, resulting in updated model-based abundance estimates of Bryde's whales in the Hawaii EEZ (Becker *et al.* 2021) (Table 1). **Table 1.** Model-based line-transect abundance estimates for Bryde's whales derived from surveys of the entire Hawaii EEZ in 2002, 2010, and 2017 (Becker *et al.* 2021). | Year | Model-based | CV | 95% Confidence Limits | |------|-------------|------|-----------------------| | | Abundance | | | | 2017 | 602 | 0.22 | 397-842 | | 2010 | 822 | 0.20 | 554-1,220 | | 2002 | 562 | 0.21 | 375-842 | Sighting data from 2002 to 2017 within the Hawaii EEZ were used to derive habitat-based models of animal density for the overall period. The models were then used to predict density and abundance for each survey year based on the environmental conditions within that year (see Forney et al. 2015, Becker et al. 2016). The modeling framework incorporated Beaufort-specific trackline detection probabilities for Bryde's whales from Barlow et al. (2015). Bradford et al. (2021) produced design-based abundance estimates for Bryde's whales for each survey year that can be used as a point of comparison to the model-based estimates. While on average, the estimates are broadly similar between the two approaches, the annual designbased estimates show much greater variability between years than do the model-based estimates (Figure 2). The model-based approach reduces variability through explicit examination of habitat relationships across the full dataset, while the designbased approach evaluates encounter data for each year separately and thus is more susceptible to the effects of encounter rate variation. Bradford et al. (2021) found through simulation that the pronounced decrease in the design-based estimates between 2010 and 2017 could not be explained by encounter rate variation alone and likely reflected true changes in distribution of Bryde's whales in the study area between those survey years. The model basedestimates demonstrated a much smaller decrease between 2010 and 2017, but are based on the implicit assumption that changes in abundance are attributed to environmental variability alone. There are insufficient data to include explicitly incorporate a **Figure 2.** Comparison of design-based (circles, Bradford *et al.* 2021) and model-based (triangles, Becker *et al.* 2021) estimates of abundance for Bryde's whales for each survey year (2002, 2010, 2017). trend term into the model due to the insufficient sample size. Despite not fully accounting for inter-annual variation in total abundance, the model-based estimates are considered the best available estimate for each survey year. Previously published design-based estimates for the Hawaii EEZ from 2002 and 2010 surveys (e.g. Barlow 2006, Bradford *et al.* 2017) used a subset of the dataset used by Becker *et al.* (2021) and Bradford *et al.* (2021) to derive line-transect parameters, such that these estimates have been superseded by the estimates presented here. Tillman (1978) concluded from Japanese and Soviet CPUE data that the stock size in the North Pacific pelagic whaling grounds, mostly to the west of the Hawaiian Islands, declined from approximately 22,500 in 1971 to 17,800 in 1977. An estimate of 13,000 (CV=0.202) Bryde's whales was made from vessel surveys in the eastern tropical Pacific between 1986 and 1990 (Wade and Gerrodette 1993). The area to which this estimate applies is mainly southeast of the Hawaiian Islands, and it is unknown if these animals are part of the same population that occurs around the Hawaiian Islands. ## **Minimum Population Estimate** Minimum population size is calculated as the lower 20<sup>th</sup> percentile of the log-normal distribution (Barlow *et al.* 1995) of the 2017 abundance estimate, or 501 Bryde's whales. # **Current Population Trend** The model-based abundance estimates for Bryde's whales from Becker *et al.* (2021) do not explicitly allow for examination of population trend other than that driven by environmental factors. Although annual encounter rate variation may have a large impact on abundance estimates for species with low density and patchy distribution, Bradford *et al.* (2021) suggest that the very high sighting rate in 2010 and very low sighting rate in 2017 cannot be explained through encounter rate variation alone and that there may be true fluctuations in Bryde's whale abundance within the Hawaii EEZ. Model-based examination of Bryde's whale population trends including sighting data beyond the Hawaii EEZ is required to more fully examine trend for this stock. ### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES No data are available on current or maximum net productivity rate. ## POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for the Hawaii stock of Bryde's whales is calculated as the minimum population size within the U.S EEZ of the Hawaiian Islands (501) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.50 (for a stock of unknown status with no known fishery mortality or serious injury within the Hawaiian Islands EEZ; Wade and Angliss 1997), resulting in a PBR of 5.0 Bryde's whales per year. #### **HUMAN-CAUSED MORTALITY AND SERIOUS INJURY** ## **Fishery Information** There are currently two distinct longline fisheries based in Hawaii: a deep-set longline (DSLL) fishery that targets primarily tunas, and a shallow-set longline fishery (SSLL) that targets swordfish. Both fisheries operate within U.S. waters and on the high seas. Between 2014 and 2018, no Bryde's whales were observed hooked or entangled in the SSLL fishery (100% observer coverage) or the DSLL fishery (18-22% observer coverage) (Bradford 2018a, 2018b, 2020, Bradford and Forney 2017, McCracken 2019). Large whales have previously been observed entangled in longline gear off the Hawaiian Islands (Forney 2010). ## **Historical Mortality** Small numbers of Bryde's whales were taken near the Northwestern Hawaiian Islands by Japanese and Soviet whaling fleets in the early 1970s (Ohsumi 1977). Pelagic whaling for Bryde's whales in the North Pacific ended after the 1979 season (IWC 1981), and coastal whaling for this species ended in the western Pacific in 1987 (IWC 1989). ## STATUS OF STOCK The Hawaii stock of Bryde's whales is not considered strategic under the 1994 amendments to the MMPA. The status of Bryde's whales in Hawaiian waters relative to OSP is unknown, and there are insufficient data to evaluate trends in abundance. Bryde's whales are not listed as "threatened" or "endangered" under the Endangered Species Act (1973), nor designated as "depleted" under the MMPA. Given the absence of recent recorded fishery-related mortality or serious injuries within the Hawaiian Islands EEZ, the total fishery mortality and serious injury can be considered to be insignificant and approaching zero. The increasing level of anthropogenic noise in the world's oceans has been suggested to be a habitat concern for whales (Richardson *et al.* 1995, Weilgart 2007). #### REFERENCES - Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background, and a Summary of the 1995 Assessments. U.S. Dept. of Commerce, NOAA Technical Memorandum NMFS-OPR-6, 73 p. - Barlow, J. 2006. Cetacean abundance in Hawaiian waters estimated from a summer/fall survey in 2002. Marine Mammal Science 22: 446–464. - Barlow 2015. Inferring trackline detection probabilities, g(0), for cetaceans from apparent densities in different survey conditions. Marine Mammal Science 31:923–943. - Becker, E.A., K.A. Forney, P.A. Fiedler, J. Barlow, S.J. Chivers, C.A. Edwards, A.M. Moore, J.V. Redfern. 2016. Moving towards dynamic ocean management: How well do modeled ocean products predict species distributions? Remote Sensing 8:149 - Becker, E.A., K.A. Forney, E.M. Oleson, A.L. Bradford, J.E. Moore, J. Barlow. *In review*. Habitat-based density models for cetaceans within the U.S Exclusive Economic Zone waters around the Hawaiian Archipelago. NOAA-TM-NMFS-PIFSC-116. - Bradford, A.L. 2018a. Injury Determinations for Marine Mammals Observed Interacting with Hawaii and American Samoa Longline Fisheries During 2015-16. U.S. Dept. of Commerce, NOAA Technical Memorandum NMFS-PIFSC-70, 27p. - Bradford A.L. 2018b. Injury Determinations for Marine Mammals Observed Interacting with Hawaii and American Samoa Longline Fisheries During 2017. U.S. Dept. of Commerce, NOAA Technical Memorandum <a href="MMFS-PIFSC-76">NMFS-PIFSC-76</a>, 14 p. - Bradford, A.L. 2020. Injury Determinations for Marine Mammals Observed Interacting with Hawaii and American Samoa Longline Fisheries During 2018. <a href="NOAA-TM-NMFS-PIFSC-99">NOAA-TM-NMFS-PIFSC-99</a>. - Bradford, A.L. and K.A. Forney. 2017. Injury determinations for cetaceans observed interacting with Hawaii and American Samoa longline fisheries during 2010-2014. NOAA-TM-NMFS-PIFSC-62 - Bradford, A.L., K.A. Forney, E.M. Oleson, and J. Barlow. 2017. Abundance estimates of cetaceans from a line-transect survey within the U.S Hawaiian Islands Exclusive Economic Zone. Fishery Bulletin 115: 129-142. - Bradford, A.L., E.M. Oleson, K.A. Forney, J.E. Moore, and J. Barlow. 2021. Line-transect abundance estimates of cetaceans in U.S. waters around the Hawaiian Islands in 2002, 2010, and 2017. NOAA-TM-NMFS-PIC-115. - Forney, K.A. 2010. Serious injury determinations for cetaceans caught in Hawaii longline fisheries during 1994-2008. NOAA Tech. Memo. SWFSC-462. - Forney, K.A., E.A Becker, D.G. Foley, J. Barlow, E.M. Oleson. 2015. Habitat-based models of cetacean density and distribution in the central North Pacific. Endangered Species Research, <u>27</u>, <u>1–20</u>. - International Whaling Commission. 1981. Japan. Progress report on cetacean research June 1979-May 1980. Rep. Int. Whal. Commn. 31:195-200. - International Whaling Commission. 1989. Japan. Progress report on cetacean research June 1987 to April 1988. Rep. Int. Whal. Commn. 39:201-204. - Leatherwood, S., R.R. Reeves, W.F. Perrin, and W.E. Evans. 1982. Whales, dolphins, and porpoises of the eastern North Pacific and adjacent arctic waters: A guide to their identification. NOAA Tech. Rep. NMFS 444, 245 pp. - Kerosky, S.M., A. Širović, L.K Roche, S. Baumann-Pickering, S.M Wiggins, and J.A Hildebrand. 2012. Bryde's whale seasonal range expansion and increasing presence in the Southern California Bight from 2000 to 2010. Deep-Sea Research Part I. <u>65</u>: 125-132. - McCracken, M.L. 2019. Assessment of incidental interactions with marine mammals in the Hawaii longline deep and shallow-set fisheries from 2014 through 2018. PIFSC Data Report DR-19-031. - Mobley, J.R., Jr, S.S. Spitz, K.A. Forney, R.A. Grotefendt, and P.H. Forestall. 2000. Distribution and abundance of odontocete species in Hawaiian waters: preliminary results of 1993-98 aerial surveys. <u>Admin. Rep. LJ-00-14C</u>. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 26 pp. - Morejohn, G.V. and D.W. Rice. 1973. First record of Bryde's whale (*Balaenoptera edeni*) off California. Cal. Fish Game 59:313-315. - NMFS. 2005. Revisions to Guidelines for Assessing Marine Mammal Stocks. 24 pp. - Ohsumi, S. 1977. Stocks and trends of abundance of the sperm whale in the North Pacific. Rep. Int. Whal. Commn. 27:167-175. - Ohsumi, S. and Y. Masaki. 1975. Japanese whale marking in the North Pacific, 1963-72. Bull. Far Seas Fish. Res. Lab. 12:171-219. - Richardson, W.J., C.R. Greene, Jr., C.I. Malme, and D.H. Thompson. 1995. Marine Mammals and Noise. Academic Press, San Diego. 576 p. - Shallenberger, E.W. 1981. The status of Hawaiian cetaceans. Final report to U.S. Marine Mammal Commission. MMC-77/23, 79pp. - Tillman, M.F. 1978. Modified Delury estimates of the North Pacific Bryde's whale stock. Rep. Int. Whal. Commn. 28:315-317. - Wade, P.R. and R.P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dept. of Commerce, NOAA Technical Memorandum NMFS-OPR-12. 93 pp. - Wade, P. R. and T. Gerrodette. 1993. Estimates of cetacean abundance and distribution in the eastern tropical Pacific. Rep. Int. Whal. Commn. 43:477-493. - Weilgart, L.S. 2007. The impacts of anthropogenic ocean noise on cetaceans and implications for management. Canadian Journal of Zoology 85:1091-1116. - Yano K.M., E.M. Oleson, J.L Keating, L.T. Balance, M.C. Hill, A.L. Bradford, A.N. Allen, T.W. Joyce, J.E. Moore, and A. Henry. 2018. Cetacean and seabird data collected during the Hawaiian Islands Cetacean and Ecosystem Assessment Survey (HICEAS), July-December 2017. U.S. Dept. of Commerce, NOAA Technical Memorandum NOAA-TM-NMFS-PIFSC-72, 110 p.